Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(49): 26720-26727, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38051161

RESUMO

Separation of carbon dioxide (CO2) from point sources or directly from the atmosphere can contribute crucially to climate change mitigation plans in the coming decades. A fundamental practical limitation for the current strategies is the considerable energy cost required to regenerate the sorbent and release the captured CO2 for storage or utilization. A directly photochemically driven system that demonstrates efficient passive capture and on-demand CO2 release triggered by sunlight as the sole external stimulus would provide an attractive alternative. However, little is known about the thermodynamic requirements for such a process or mechanisms for modulating the stability of CO2-derived dissolved species by using photoinduced metastable states. Here, we show that an organic photoswitchable molecule of precisely tuned effective acidity can repeatedly capture and release a near-stoichiometric quantity of CO2 according to dark-light cycles. The CO2-derived species rests as a solvent-separated ion pair, and key aspects of its excited-state dynamics that regulate the photorelease efficiency are characterized by transient absorption spectroscopy. The thermodynamic and kinetic concepts established herein will serve as guiding principles for the development of viable solar-powered negative emission technologies.

2.
Proc Natl Acad Sci U S A ; 119(40): e2205922119, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161907

RESUMO

In soft devices, complex actuation sequences and precise force control typically require hard electronic valves and microcontrollers. Existing designs for entirely soft pneumatic control systems are capable of either digital or analog operation, but not both, and are limited by speed of actuation, range of pressure, time required for fabrication, or loss of power through pull-down resistors. Using the nonlinear mechanics intrinsic to structures composed of soft materials-in this case, by leveraging membrane inversion and tube kinking-two modular soft components are developed: a piston actuator and a bistable pneumatic switch. These two components combine to create valves capable of analog pressure regulation, simplified digital logic, controlled oscillation, nonvolatile memory storage, linear actuation, and interfacing with human users in both digital and analog formats. Three demonstrations showcase the capabilities of systems constructed from these valves: 1) a wearable glove capable of analog control of a soft artificial robotic hand based on input from a human user's fingers, 2) a human-controlled cushion matrix designed for use in medical care, and 3) an untethered robot which travels a distance dynamically programmed at the time of operation to retrieve an object. This work illustrates pathways for complementary digital and analog control of soft robots using a unified valve design.

3.
J Chem Phys ; 154(21): 214504, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34240972

RESUMO

We have investigated the structure and phase behavior of biocompatible, aqueous deep eutectic solvents by combining choline acetate, hydrogen aspartate, and aspartate amino acid salts with water as the sole molecular hydrogen bond donor. Using contrast-variation neutron diffraction, interpreted via computational modeling, we show how the interplay between anion structure and water content affects the hydrogen bond network structure in the liquid, which, in turn, influences the eutectic composition and temperature. These mixtures expand the current range choline amino acid ionic liquids under investigation for biomass processing applications to include higher melting point salts and also explain how the ionic liquids retain their desirable properties in aqueous solution.


Assuntos
Aminoácidos/química , Colina/química , Líquidos Iônicos/química , Solventes/química , Água/química
4.
Proc Natl Acad Sci U S A ; 116(16): 7750-7759, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30923120

RESUMO

Although soft devices (grippers, actuators, and elementary robots) are rapidly becoming an integral part of the broad field of robotics, autonomy for completely soft devices has only begun to be developed. Adaptation of conventional systems of control to soft devices requires hard valves and electronic controls. This paper describes completely soft pneumatic digital logic gates having a physical scale appropriate for use with current (macroscopic) soft actuators. Each digital logic gate utilizes a single bistable valve-the pneumatic equivalent of a Schmitt trigger-which relies on the snap-through instability of a hemispherical membrane to kink internal tubes and operates with binary high/low input and output pressures. Soft, pneumatic NOT, AND, and OR digital logic gates-which generate known pneumatic outputs as a function of one, or multiple, pneumatic inputs-allow fabrication of digital logic circuits for a set-reset latch, two-bit shift register, leading-edge detector, digital-to-analog converter (DAC), and toggle switch. The DAC and toggle switch, in turn, can control and power a soft actuator (demonstrated using a pneu-net gripper). These macroscale soft digital logic gates are scalable to high volumes of airflow, do not consume power at steady state, and can be reconfigured to achieve multiple functionalities from a single design (including configurations that receive inputs from the environment and from human users). This work represents a step toward a strategy to develop autonomous control-one not involving an electronic interface or hard components-for soft devices.

5.
ChemSusChem ; 12(1): 270-274, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30300962

RESUMO

Certain protic ionic liquids (PILs) are potentially low-cost, high-efficiency solvents for the extraction and processing of aromatic compounds. To understand the key design features of PILs that determine solubility selectivity at the atomic level, neutron diffraction was used to compare the bulk structure of two PILs with and without an aromatic solute, guaiacol (2-methoxyphenol). Guaiacol is a common lignin residue in biomass processing, and a model compound for anisole- or phenol-based food additives and drug precursors. Although the presence of amphiphilic nanostructure is important to facilitate the dissolution of solute nonpolar moieties, the local geometry and competitive interactions between the polar groups of the cation, anion, and solute are found to also strongly influence solvation. Based on these factors, a framework is presented for the design of PIL structure to minimize competition and to enhance driving forces for the dissolution of small aromatic species.

6.
Sci Robot ; 4(31)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-33137768

RESUMO

Periodic actuation of multiple soft, pneumatic actuators requires coordinated function of multiple, separate components. This work demonstrates a soft, pneumatic ring oscillator that induces temporally coordinated periodic motion in soft actuators using a single, constant-pressure source, without hard valves or electronic controls. The fundamental unit of this ring oscillator is a soft, pneumatic inverter (an inverting Schmitt trigger) that switches between its two states ("on" and "off") using two instabilities in elastomeric structures: buckling of internal tubing and snap-through of a hemispherical membrane. An odd number of these inverters connected in a loop produces the same number of periodically oscillating outputs, resulting from a third, system-level instability; the frequency of oscillation depends on three system parameters that can be adjusted. These oscillatory output pressures enable several applications, including undulating and rolling motions in soft robots, size-based particle separation, pneumatic mechanotherapy, and metering of fluids. The soft ring oscillator eliminates the need for hard valves and electronic controls in these applications.

7.
J Phys Chem B ; 121(27): 6610-6617, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28608688

RESUMO

Pyrrolidinium ionic liquids, especially pyrrolidinium acetate (PyrrAc), have demonstrated outstanding capacity for extracting lignin from biomass, as electrolytes for fuel cells and lithium ion batteries and as solvents for acid-catalyzed reactions. In this work we show that the unusual liquid nanostructure of PyrrAc is the key to its versatility as a solvent compared to other ionic liquids. Neutron diffraction with multiple H/D isotopic substitutions reveals that the bulk nanostructure of PyrrAc is a bicontinuous network of interpenetrating polar and apolar domains. However, the arrangement of groups in both domains is strikingly different from that found in other ionic liquids. In the apolar regions, the pyrrolidinium rings are highly intercalated and disordered, with no preferred alignment between adjacent pyrrolidinium rings, which distinguishes it from both π-π stacking seen in imidazolium or pyridinium ionic liquids, and the tail-tail bilayer-like arrangements in linear alkylammonium ionic liquids. The H-bond network within the polar domain extends only to form finite clusters, with long bent H-bonds to accommodate electrostatics. Therefore, while PyrrAc unquestionably has well-defined amphiphilic nanostructure, the disordered arrangement of groups in the polar and apolar domains enables it to accommodate a wide variety of solutes. The combination of well-defined polar/apolar nanostructure, but disordered arrangements of groups within domains, is therefore the origin of PyrrAc's capacity for lignin extraction and as an electrolyte.

8.
J Phys Chem B ; 118(33): 9983-90, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25068766

RESUMO

Strong cohesive forces in protic ionic liquids (PILs) can induce a liquid nanostructure consisting of segregated polar and apolar domains. Small-angle X-ray scattering has shown that these forces can also induce medium chain length n-alkanols to self-assemble into micelle- and microemulsion-like structures in ethylammonium (EA(+)) and propylammonium (PA(+)) PILs, in contrast to their immiscibility with both water and ethanolammonium (EtA(+)) PILs. These binary mixtures are structured on two distinct length scales: one associated with the self-assembled n-alkanol aggregates and the other with the underlying liquid nanostructure. This suggests that EA(+) and PA(+) enable n-alkanol aggregation by acting as cosurfactants, which EtA(+) cannot do because its terminating hydroxyl renders the cation nonamphiphilic. The primary determining factor for miscibility and self-assembly is the ratio of alkyl chain lengths of the alkanol and PIL cation, modulated by the anion type. These results show how ILs can support the self-assembly of nontraditional amphiphiles and enable the creation of new forms of soft matter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...